Chapter 5

· The CDR's
· The Result Codes
· Partial Logging
· Replication Scheme
· Report and Auxiliary tables
· Basic Billing and Statistical Package
· Dispute Report
· Data Entry Forms
· Calling Cards
· Security Features
The CDR’s

The CDR has the following fields:

Name Type
Description
Call_ID
long

Primary Key, unique number for each call
Engine

long

Identifies which box (it could be several)
Account
char(30)
Account to which the call will be charged
ANI

char(30)
Number of the calling party (this field may be used for

something else according to the function)
DialTime
Datetime
Time at which the call came in.
AnswerTime
long

Miliseconds from seizure to Answer Supervision
CallLength
long

Miliseconds from AnswerSupervision to Call Drop
InboundCh
long

Inbound Channel (span x 100 + Time Slot number)
OutboundCh
long

Outbound Channels (span x 100 + Time Slot number)
DialResult
long

Result code (see Result Codes list below).
DialedStr_i
char(30)
String dialed received at call setup.
DialedStr_o
char(30)
String dialed by the switch into the outbound channel
RouteIdx
long

ID of the destination.
InGroupID
long

Client ID
OutGroupID
long

Outbound trunk group
Sell_Cost
float

How much the Account was charged.
Buy_Cost
float

How much did the call cost*

*Unlike Sell_Cost that, in the case of prepaid accounts, requires to be calculated in real time, Buy_Cost is only needed for billing purposes and can be calculated at a later time at a Server or reporting computer. This reduces the switch CPU usage by OmniBox without any serious sacrifice.

**ANI: the value to be stored in this field is:

· For tandem switching functions, the ANI received

· For PIN verification functions the with auto PIN, the matching authorization code

 It not necessarily the ANI sent with the outbound call (protocol allowing) which is determined by the stored procedure proc_GetANItobeSent that will be called from the OmniBox just before making the call.

CREATE PROCEDURE proc_GetANItobeSent
@ChIn int, @ChOut int, @RouteIdx int, @AccNum Varchar(30), @ANI Varchar(30)

AS
/*EXAMPLE 1: ANI starts with a 4 then has up to 4 random digits and ends with the slot number*/
--SELECT '4' + Cast(cast(RAND(@ChIn)*9999 As int) As Char(4))+Cast(@ChOut%100 As Char(2))
/*EXAMPLE 2: Return same value as it had*/
SELECT @ANI

/*EXAMPLE 3 Return '0000000000'*/
--SELECT '0000000000'

The result codes:

Result for rejected calls
	Code
	Description

	0
	CALL_DROP_BEFORE_SETUP

	1
	NO_CALL_ID

	2
	UNKNOWN_DESTINATION

	3
	NO_OUTB_CH_AVAILABLE

	4
	TOO_FEW_DIGITS

	5
	TOO_MANY_DIGITS

	6
	BLOCKED_NUMBER

	7
	ROUTE_IDX_NOT_FOUND

	8
	NO_RESOURCE_AVAILABLE

	9
	INCALL_SETUP_ERROR

Results for non connected calls
	Code
	Description

	50
	BUSY_DETECTED

	51
	FAST_BUSY

	52
	NO_ANSWER

	53
	NO_RINGBACK

	54
	OPERATOR_INTERCEPT

	55
	HUNG_UP_WHILE_CONNECTING

	56
	NO_DIALTONE

	57
	MAKE_CALL_ERROR

	58
	MAKE_CALL_EXCEPTION

	59
	CALL_ANALYSIS_ERROR

	60
	HUNGUP_WHILE_RINGING

	61
	TRUNCATED

	62
	DEST_CALL_DROP

Results for connected calls
	Code
	Description

	100
	HAS_DETECTED

	101
	FAX_DETECTED

	102
	RECORDING_DETECTED

	103
	VOICE_DETECTED

	105
	CONNECTED_UPON_MAX_RING

Results for forced disconnections
	Code
	Description

	1100
	HAS_HUNG_TRUNK_TONE

	1101
	FAX_HUNG_TRUNK_TONE

	1102
	RECORDING_HUNG_TRUNK_TONE

	1103
	VOICE_HUNG_TRUNK_TONE

	1105
	MAX_RING_HUNG_TRUNK_TONE

	1150
	BUSY_DETECTED_AT_OUT_BY_HTRUNK

	1151
	FBUSY_DETECTED_AT_OUT_BY_HTRUNK

	1152
	NOANS_AT_OUT_BY_HTRUNK

	1153
	DEAD_AIR_AT_OUT_BY_HTRUNK

	1154
	OP_INT_AT_OUT_BY_HTRUNK

	1250
	BUSY_DETECTED_AT_IN_BY_HTRUNK

	1251
	FBUSY_DETECTED_AT_IN_BY_HTRUNK

	1252
	NOANS_AT_IN_BY_HTRUNK

	1253
	DEAD_AIR_AT_IN_BY_HTRUNK

	1254
	OP_INT_AT_IN_BY_HTRUNK

	1600
	HAS_INCONSISTENT

	1601
	FAX_INCONSISTENT

	1602
	REC_INCONSISTENT

	1603
	VOI_INCONSISTENT

	2000
	TOO_LONG

	2100
	HAS_TOO_LONG

	2101
	FAX_TOO_LONG

	2102
	RECORDING_TOO_LONG

	2103
	VOICE_TOO_LONG

	2105
	MAX_RING_TOO_LONG

	3000
	BLOCKED_INBOUND

	3100
	HAS_BLOCKED_IN

	3101
	FAX_BLOCKED_IN

	3102
	RECORDING_BLOCKED_IN

	3103
	VOICE_BLOCKED_IN

	3105
	MAX_RING_BLK_INBND

	4000
	BLOCKED_OUTBOUND

	4100
	HAS_BLOCKED_OUT

	4101
	FAX_BLOCKED_OUT

	4102
	RECORDING_BLOCKED_OUT

	4103
	VOICE_BLOCKED_OUT

	4105
	MAX_RING_OUTBND

Example:

	Call_ID
	Engine
	Account
	ANI
	DialTime
	Answer Time
	Call Length
	Inbound Ch
	Outbound Ch
	Dial Result
	DialedStr_i
	DialedStr_o

	10064
	16
	1000000001
	
	7/14/00 2:08:07 PM
	24745
	0
	1107
	2101
	53
	0115913234567
	3234567

	10065
	16
	1000000001
	
	7/14/00 2:08:07 PM
	16253
	0
	808
	1902
	50
	0115936351289
	0115913234567

	10066
	16
	1000000001
	
	7/14/00 2:08:07 PM
	28250
	126354
	1409
	1601
	102
	18761715689
	1715689

	10067
	16
	1000000001
	
	7/14/00 2:08:07 PM
	28240
	612896
	110
	2202
	103
	18767074567
	17074567

	RouteIdx
	InGroupID
	OutGroupID
	Sell_Cost
	Buy_Cost

	160
	2
	1
	0
	0

	151
	6
	8
	0
	0

	170
	3
	2
	0.88
	0.53

	170
	5
	6
	5.20
	3.65

Partial Logging

When this feature is enabled in the 16th record of the sys_Parameter table, the call is partially logged into table Part_Log when the outbound call is CONNECTED. Of course, information related to call length is not yet available and even the result code may be subject to modification, When the call is finished, the missing information is supplemented, the temporary information modified if necessary and the call is logged into the Log_CDR table. If for some reason the switch crashes or power goes off. the information is kept and then recovered when the OmniBox is loaded again.

Replication Scheme

The Centralized Scheme may only be used when the link between the OmniBox and the server computer running the OmniBilling system is 100% reliable. This kind of reliability is only attainable if the Omniilling and the OmniBox run on the same computer or on two different computer but in the same LAN.

If the available link is only through a WAN and, sometimes, even within a LAN the link may not 100%. If the link goes down OmniBox, tries to reconnect but it may eventually use an emergency exit as a last try to reestablish the link, something very near to a crash, . For these cases, replication is the way to go. Data entry at the OmniBilling database, rates, accounts, new destination can be replicated using standard Microsoft Replication. This is, the OmniBilling being the Publisher while the OmniBox would be the Subscriber. The Articles for the Publication should be:

ANIBlackList
AuthorizationCodes
Balances

IdxLookup
LegBRateLookup
Rep_Companies
Stm_SpeedDial
Tec_BlockList
Tec_ExchCodes

This information is generated by data entry and is relatively infrequent if compared to the one generated by traffic at the OmniBox, CDR's , account balance updates and ANI black list entries. Microsoft scheme has proven not up to this task, so OmniBox Replication Scheme was developed.

When a call is finished, the data for SQL statement are saved to the table Log_PendingRepl, these may be CDR's and/or Account updates. Also when a call is received the same is done to update the ANIBlackList table. These transactions are::

EXEC proc_CDR.<All parameters>

UPDATE Balances Set Last_Update = `<Current Date>`, First_Use = `<Date Value>`,

 Balance = '<New Balance' Where cl_id = `<Acc<`

UPDATE ANIBlackList Set AttemptCount = AttemptCount + 1 Where @ANI = '<ANI>'

Notice the use above of the accent instead of the apostrophe, this is because apostrophes have a functional meaning within SQL statements, this way you avoid the SQL interpreter from misinterpreting.

	ID
	SQL

	115
	{CALL proc_CDR(10134,0,`1000000000`,``,`07/13/00 11:08:59`,31185,117088,201,218,102,`01159321234567`,`01159321234567`,102,1,2,0.02,0.49)}

	116
	{CALL proc_CDR(10142,0,`1000000000`,``,`07/13/00 11:11:18`,16924,0,212,222,55,`18761234567`,`18761234567`,170,1,5,0.02,0.01)}

	117
	{CALL proc_CDR(10143,0,`1000000000`,``,`07/19/00 13:35:21`,42852,49982,201,213,102,`01159321234567#`,`01159321234567#`,102,1,2,0.03,0.23)}

	118
	{CALL proc_CDR(10144,0,`1000000000`,``,`07/19/00 13:56:13`,61428,81417,201,213,102,`01159321234567`,`01159321234567`,102,1,2,0.04,0.37)}

	119
	{CALL proc_CDR(10145,0,`1000000000`,``,`07/19/00 13:58:42`,34249,99734,201,214,102,`01159321234567`,`01159321234567`,102,1,2,0.02,0.42)}

[image: image20.png]An application called SrcRepl.exe runs on the same computer as the OMNIBOX. It reads from the Log_PendingRepl table and sends the SQL in a UDP packet with a sum check to the SQLReplic.exe running on the Server Computer. The ReplicSQL commits the transaction on the SQL Server and, if successful, returns an acknowledgement UDP packet (ACK) to SrcRepl.exe. Only after receiving the ACK is that it will delete the record from the Log_PendingRepl table Log_PendingRepl. SrcRepl will re-send the ACK packet to the OmniMonitor and it will blink the Replic indicator green.

If for any reason SQLReplic can’t perform the transaction, then it sends a not acknowledge packet (NAK) to SrcRepl. When a NAK is received by SrcRepl, it will wait 5 seconds and re-send the same SQL but will send a NAK instead to the OmniMonitor that, this time, will blink the indicator in red. The same SQL will be re-resent until the transaction is successful. After 20 replication failures in a row, ReplSrc will send and alarm to the Watchdog (Alarm 12).

The SQLReplic window shows the last transaction performed and the result message below. When there is a replication failure, you can check on this window to figure out what is going wrong

[image: image1.png]
Possible reasons for transactions to fail:

· Different record with same Call_ID (if it were the same, ACK will be sent back)

· No disc space for the SQL Server

· No space for Transaction Log (Dump transaction in TempDB)

· The table locked for some query being modifying records.

· Sum check fails.

SQLReplic makes an ODBC connection to the billing database, the default DNS is ReplSrc but a different one may be specified in the S/ command line switch. This connection may require a user name and password, maybe a different port number than the default 1099 or if the computer has several network adapters you may need to specify which IP is it that you need to work with. You specify these parameters using the SQLReplic command line switches. Syntax below:

SQLReplic.exe N/[port Number] U/[User name] P/[Password] I/{Ip address] S/[ODBC Source name]

There are also entries to the OmniBox Database that are needed for reports at the OmniBilling server, these are trunk names, its reference ID's and data like LegACost, provider ID's and default accounts. Though for manual entries the Microsoft Replication is good enough, since this scheme is already set up we might as well use it. Triggers procedures for the dia_InCh and dia_OutCh tables are provided that generate records in Log_PendingRepl that will do the necessary updates at the OmniBilling database.
Report Auxiliary tables

Reporting will require information from some of the OmniBox tables that have been already discussed in Chapter 3 and 4. Information in the following OmniBox tables is required in the reporting process:

Dia_OutCh

Dia_InCh

IdxLookup

The tables below are mainly needed at billing time but will be queried by OmniBox in case of functions with PIN verification:

Balances

AuthorizationCodes

The LegB tables below are required only for billing, but in the case of prepaid accounts, billing must be made in realtime:

LegBCostLookup

LegBRateLookup

The following tables are only for reporting purposes:

QueryData

GroupInfo

These tables must be made accessible to the reporting system or its information synchronized, manually or automatically to local tables. In system with more than one OmniBox, it gets somewhat more involed. Dia_OutCh and Dia_InCh won’t do because there is no field to identify which box a record belongs to. In this case, these names will correspond to views of the GroupInfo table joined to the

QueryData.

[image: image2.png]
GroupInfo

	GroupID
	Engine
	IO
	Description
	DefaultAcc
	LegACost
	Provider

	2
	20
	1
	WTC
	12345687
	0.0
	0

	3
	20
	0
	Ecuador
	
	
	25

QueryData

	DataID
	Description
	Date1
	Date2
	Int1
	Int2
	Int3
	Int4

	1
	PullRecs
	9/18/01
	9/20/01
	-1
	0
	8
	0

Int2 , for the PullRecs row means Engine while Int1 will specifiy y the temporary table Log_CDR1 is to be truncated (<> 0) or not (0) before pulling records from the main CDR table. Int3 and Int4 are used to introduce filters on Domain and Ranges respectively when pulling records, This is useful when you need to invoice only one client for a week, if you filter, the pulling query will run faster for you don’t need to pull all the records.

The dia_InCh view will show GroupID as DomainID, Description, DefaultAcc and LegACost Where IO = 1 and Engine = 20. The dia_OutCh view will show the GroupID as RangeID, the Description and the Provider for IO = 0 and Engine = 20.

The GroupInfo table must be kept synchronized with all the dia_InCh and dia_OutCh tables in all the OmniBoxes. To do this the mentioned tables have triggers that, if activated, will either directly update this table if in Centralized mode or insert a transaction record into the PendingRepl table that will automatically update GroupInfo in the Billing server through the #include proprietary replication technology..

Local to the reporting system you must also find the following tables:

Log_CDR
As define above

Log_CDR1
Temporary table with the same structure as Log_CDR but with two additional integer number fields, namely RateID and CostID, that will store the rates and costs rate record identifiers that were valid at the time of the call. This table is indexed in almost every field to speed up the queries in the reports.

Rep_Engines
Names each of the OmniBox’s in the system.

	EngineID
	Name

	0
	include_0

Rep_Companies:

Client or provider company information

[Company ID]

int

[Company Name]

varchar(40)

Contact

varchar(50)

Position

varchar(50)

[Division or Department]
varchar(20)

Address

varchar(60)

City

varchar(15)

Region

varchar(15)

[Postal Code]

varchar(10)

Country

varchar(15)

[Federal ID]

varchar(10)

[Sale Tax Number]
varchar(15)

Phone

varchar(24)

Fax

varchar(24)

Type

varchar(4)
(‘C’ for Client ‘P’ for provider ‘D’ for distributor)

[Parent Company ID] int (Points to another company's record)
 This is an open table, the OmniBilling structure and queries only uses [Company ID], [Company Name] and Type fields. The invoice report also references the contact and address related fields, but the user is free to add or remove fields as needed. Also a hierarchical company structure can be made using the [Parent Company ID] field.

QueryData:
Is an auxiliary table that holds data to views and stored procedures involved in the reporting process. For example data in DataID=1, will istruct stored procedure Rep_PullRecs to insert into Log_CDR1 record in Log_CDR from Date1 to Date2. If Int1 were < > 0, Log_CDR1 would be truncated before insertion, Int2 will hold the Engine ID for the records to be pulled.

	DataID
	Description
	Date1
	Date2
	Int1
	Int2
	Int3
	Int4

	1
	PullRecs
	4/4/01
	6/9/01
	1
	0
	0
	0

Basic Billing and Statistical Package

This Package has been programmed using Microsoft ACCESS but queries are run mostly from the Microsoft SQL Server using views and stored procedures.

The Log_CDR table is usually huge, it could hold millions of records corresponding to every call attempts ever made through the system. In a standard 4T in / 4T out system, 20000 attempts a day is a typical figure. Even a system like this will hit a million in 50 days. Indexes of big tables can become huge in size and also add overhead when inserting records, operation that must be done in real time by the switch or the replication system. That is why Log_CDR is only indexed on Call_ID/Engine and DialTime. Only queries involving these fields are going to yield in reasonable times.

The above explains why the any report operation in this Package must be preceded by a Pull Records operation. This operation consists in copying record from Log_CDR between two dates into the temporary table Log_CDR1.

[image: image3.png]
Once the records are pulled, any of the reports may be previewed and then printed. Records can be pulled just copying the fields to Log_Call1 or with cost fields calculation(Buy and Sell costs will be calculated for each record using the valid rates to its DialTime). This last way is slower but you need it only for invoicing or to pay the providers, if you only need summaries or stats you may uncheck Calculate Moneys.
Reports

The Summary Report:

[image: image4.png]
The $ummary Report

[image: image5.png]
Invoice

[image: image6.png]
The invoice number is automatically generated and unique for each date and company. The formula is: (Year(First Call) Mod 1000)*100000+(Week number)*1000+Company ID

Pay Provider

[image: image7.png]
Result Codes

[image: image8.png]
Dispute Reports

Is common practices among carriers and its clients or carriers and its providers to send the CDR’s when a dispute generates concerning service charges. The CDR’s normally have more information than that required to settle a dispute, so actually the best is to supply only the information that’s needed to ease the review. To generate a dispute report you must first pull the records for the days in question and then hit the one two rightmost buttons in the Report Center form. Which one will depend upon the dispute being with client or a provider. One of the two forms below will show:

[image: image9.png]
The Dispute Table for a provider looks like this:

	Company Name
	Call_ID
	Switch
	DialTime
	Call Length (ms)
	Ch
	DialedStr
	Destination
	Charge

	ABC Satellite Telecom Inc.
	24520
	SW_0
	4/16/01 11:53:28 AM
	86604
	213
	01159347234567
	Guayaquil
	1.25

	ABC Satellite Telecom Inc.
	24521
	SW_0
	4/16/01 11:56:21 AM
	133745
	214
	01159347234567
	Guayaquil
	5.07

And for a client, very similar:

	Company Name
	Call_ID
	Switch
	DialTime
	Call Length (ms)
	Ch
	DialedStr
	Destination
	Charge

	Best Carrier International Corp.
	24520
	SW_0
	4/16/01 11:53:28 AM
	86604
	104
	01159347234567
	Guayaquil
	1.45

	Best Carrier International Corp.
	24521
	SW_0
	4/16/01 11:56:21 AM
	133745
	105
	01159347234567
	Guayaquil
	6.67

The differences being that the Company name is that of a client; the Ch in the case of a provider is an outbound channel while if a client, an inbound one; the charge also corresponds to the buy or sell rates respectively.

The dispute table can further be filtered by Destination, Ch, etc. to reduce the records to only those involved in the dispute. This table can be exported to any requested format using Microsoft ACCESS export features.

Data Entry Forms

The information on client and provider companies must be entered into the Rep_Companies table in order for it to properly show up in the Invoices and Pay Provider reports. The following is an entry form that will help accomplishing this task.

[image: image10.png]
The full mailing address field need not be entered, it is automatically assembled by the form.

One of the most difficult parts of the accounting task in telephony traffic wholesale is that route rates change in a daily and sometimes even hourly basis. In order to produce an invoice CDR and rates must be combined to render the right charges. This package can do this for you, all you have to do is enter a record into the LegBRateLookup table every time a route changes its rate for some client type. The ActivationDate field must bear the time at which this rate is to become effective (or became effective). During the Pull Records operation the only the valid rates will affect the Sell_Cost calculation. There is an entry form for the selling rates:

[image: image11.png]
The most frequent use of this form is to change rates, remember that for this, you don’t edit records but you append new ones with a later activation date.

The form will list all the companies in that type in the Companies by Client Type subform and below all the route records ever defined for that client type. You can filter and sort this list at will in order to help your new entries. A combo-box will help you pick among the available routes in the IdxLookup table and the activation date will default to the current day at midnight.

It is frequent that you need to create a new client type which leads to create a new set of rate records for it. The task of entering them one by one must immediately make you wonder if there is a better way, well… there is. Hitting the button Open Utility for appending multiple records, will open the form bellow that comes to the rescue.

[image: image12.png]
The idea is to cut & paste from the IdxLookup Subform in the left into the temporary one in the right. Enter the right values in the textboxes at the bottom of the window and hit create Leg B Rates, the records will be appended to the LegBRateLookup table. Once created you may edit the rates and Peak time field issues.

The creation of new client types may even involve entering rates from a given rate table in EXCEL, comma delimited text or any other typical format. To help automate this task, the Prepare Import Utility form is provided in this Billing Package. To use this tool you must first import the rates data into the New Rates table. On how to do that, read Microsoft ACCESS help.

[image: image13.png]
To import rates into a newly created set of records in the LegBRateLookup table, there must be joining fields and the only possible are the Destination in IdxLookup and Country in New Rates. Usually, you may find a pretty good match, but there will always be a few exceptions. On the left top the Destination’s not matching any of the Country’s are listed. Left bottom you find the opposite. On the right IdxLookup
As well as the New Rates tables are displayed for editing and/or appending to reduce the number of mismatches.

Once an acceptable match is attained, you may hit Do Import and the rates will be imported to all joined records. The remaining mismatch must be entered manually.

Also, a means is provided to update all the rates in New Rates incrementing them by a percentage you may enter in a text box at the right center of the window. The button Up Mark % will do the update.

There is a similar problem for the cost rates, providers can change rates as fast as you, so in order to calculate what your provider must be paid, the solution is very similar. The cost rates are stored in a very similar table called LegBCostLookup. To ease up the entry task there is a form:

[image: image14.png]
The form will display all the route records ever defined to the selected provider. Combo boxes will drop down a list of all possible routes. The list of routes can be filtered and sorted at will to facilitate the copy and paste of entered information. The Do Import

Create multiple records opens the LegBRateSetup form, described above.
The New Provider Company button will open the Companies form shown above, with the company Type preset as “P” for client. The Prepare Import Utility button will bring the same Import Rate Utility form described above. The Do Import button will update the rates in all joined records.

The IdxLookup table is what associates dialed numbers to route indexes. The entry for to this table is invoke by hitting the IdxLookup EntryForm button in the Reports and Entry Form.

[image: image15.png]
Manual entries to this table is the most labor intensive task involving dynamic routing. Not only there are hundreds of destinations with distinctive rates, but prefixes could be such that, even using wild cards, a single destination may require multiple records. To alleviate this burden, a table (SW_IdxLookupPrototype) with IdxLookup prototype records to 459 destinations is provided with the OmniBilling system. Also a form is provided to further help in the task, it may be invoked by hitting the button Show Prototypes Form.

[image: image16.png]
You may append all its records or just those corresponding to the supported destinations. The operation is straight forward.

Customer Service:

Any toll telephony service requires a minimal customer service where a client may call and change his PIN, check his balance or place a trouble ticket. The form below serves this purpose showing all it is to know about an account. To use it you must first pull the records for a time interval most likely to be disputed, only calls made during this period will show in the Account CDR’s subform.

[image: image17.png]
Access to the Balances and AuthorizationCodes tables may need to be subject to security procedures since they store sensitive information. Microsoft Access provides means to secure such tables, consult its documentation on the subject. Also SQL security and custom triggers to log changes to these tables may be ordered from #include.

Calling Cards:

Calling Card accounts are just prepaid accounts. They must be set to client types below 100 so as to perform automatically the real time billing. This kind of retail will generate a lot of accounts, but the good news is that you don’t need to invoice them. OmniBilling provides tools to generates the account and PIN numbers for the calling cards. These tools are accessible through the buttons on the lower right corner the main form.

[image: image18.png]

The Generate and Fix buttons will show the two forms below respectively. The one the left is good for generating the accounts and the second for fixing potential mistakes in the generated accounts or changes that must be introduced after card generation, for instance, 1000 cards got printed with $10 instead of $15… What, throw them all away ? better is to fix the accounts to match the print

 Calling Card Forms

[image: image19.png]
All the accounts in the same batch will share the same values in the above shown fields:
· Initial Balance- is the price of the card;

· Client Type- will specify which set of rates apply;

· Language- will select the set of prompts to use in the IVR after Login (before Login, is the Language in the default account that prevails),

· WelcomeID- is the prompt number to be used to welcome the customers after a successful login, a zero will mean no welcome prompt. The prompts sequence is as follows: The first prompt the caller hears is the Welcome ID of the default account, next the "Enter PIN" and then, if the login is successful, the prompt specified by this field .

· CompanyID- refers to the company distributing the cards and its data can be found in the Rep_Companies table, the combo box with list all distributor companies for you to select.

· RoutingSet- as explained in Chapter 4, routing sets allow to have premium, standard and economy routes. I such choices exist in your system, here is the place to specify what kind of routing the cards of this batch will be getting. Calling cards may also have expiration dates and maintenance fees.

· LegAFactor: Unless the Calling Card service can be access by a local phone call, there is a Leg A cost involved. This field establishes how much of this cost is being passed to the caller. Charging for the A leg, even though it will only show on the small print, doesn’t help sales but it discourages long “chats” with the IVR and helps bring down the Leg B rates, that normally get greater attention from potential customers.

· Life Span: Once the card is used for the first time, it “lives” only for the number days specified in this field.
· ExpirationDate- A card won’t be honored after expiration date. This field will establish an initial expiration date after which the card can’t be sold, it will show a default of 1 year from current date. Upon first use, the expiration date is set to the Life Span plus this first use day even if it goes beyond the initial value.

· Monthly maintenance will show a default of $.50 but it may also be set as needed.

Default Batch number (Next Match) for a new batch will be the last batch generated+1, default card count in the batch is 10000 and 10 the PIN number default character count. PIN’s are actually characters, not numbers, this meaning that 0123456789 is not equal to 123456789. The account numbers will be generated as <batch>_<PIN>, for example the PIN above pertaining to batch 23 will have an account ID of 23_0123456789. The number generator in OmniBilling guarantees that it never generates the same number twice as long as old accounts are never erased even after the cards has been exhausted. Cards may be recharged for the same card tenant but a number may never be reused on a new card.
The Export button will prompt you for the batch to export having the last one generated as default . Then it will prompt you for the txt file path to which the list of numbers will be exported, the default being:

 <path to OmniBilling.mdb>/Batch_<batch number>.txt

for example “C:\Work\OmniBox\Batch_23.txt”. The format of the file is one number per line in quotation marks, example:

“0123456789”

“4256874125”

“5874695123”

etc.

The Activate button will prompt you for the batch to export having the last one generated as default . If the batch is completely deactivated y will be activated, if it is already fully of partially activated you will be prompted for doing full activation, deactivation or to cancel the operation.

*Security Features

Balances and AuthorizationCodes tables store information very sensitive to a prepaid or even wholesale operation. Open access to these tables make them easy targets for fraudulent entries. Unless all the sales and customer service tasks are attended by reliable partners, access to these tables should be, not only password protected, but all the user activity should be logged in a table accessible only by an administrator. OmniBilling provides such a table (OpLog) and the necessary functionality to keep track of who, what and when.

OpLog table example:

	EvTime
	Event
	Operator

	4/9/02 3:51:52 PM
	Authorization_ from 10000000000000 to 1000000000000;
	CustAdmin

	4/11/02 10:53:34 AM
	UPDATED cl_id 1_0072372324 ClientType From 1 to 2
	CustAdmin

	4/11/02 11:52:16 AM
	DELETED cl_id = Test Account, Last_Update = Apr 11 2002 10:56AM, balance = 100, LanguageOffset = 0, WelcomeID = 5, ClientType = 100, LegAFactor = 0, InUse = 0, BalanceLimit = 0, CompanyID = 0, RoutingSet = 0, RealTimeBilling = 0, Batch = 0, First_Use = Apr 11 200, Expires = Apr 11 2003 11:52AM, Maintenance_Fee = 0
	CustServ3

	4/11/02 12:26:28 PM
	UPDATE Authorization from 10000000000000 to 10000000, from 1000000000 to 1000000000
	CustServ1

	4/11/02 12:38:47 PM
	DELETE Authorization = 8001000009, 8001000009
	CustAdmin

These features involves triggers that are not activated by default because it requires setting up SQL server logins for the customer server operators and administrators.

*This option is not part of the basic Billing system, it must be explicitly ordered to #include.

� EMBED PBrush ���

[image: image21.png]_1054119474

_1073981360

_1077635774

_1080966949

_1080967339

_1080966660

_1077619709

_1077620192

_1077621721

_1077596389

_1073973174

_1073974099

_1057584555

_1061971921

_1056876825

_1054017184

_1054019231

_1054038886

_1054018270

_1053930296

